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A Rigorous and Efficient Full-Wave Analysis of
Uniform Bends in Rectangular Waveguide
Under Arbitrary Incidence
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S. Cogollos, and A. Coves

Abstract—I n thispaper, arigorousfull-waveanalysisof uniform
bends in rectangular waveguide is performed. An accurate and
efficient method-of-moments solution combined with the general-
ized-admittance-matrix (GAM) formulation is proposed in order
to achieve a full-wave char acterization of the analyzed structures.
This full-wave modal solution turns out to be necessary for mod-
eling complex microwave devices involving an arbitrary number
of discontinuities between curved and straight waveguides, where
all the modes of the involved guides are excited. The key feature
of the presented method liesin the GAM representation of single
and cascaded curved E- and H -plane uniform bends, which allows
to construct accurate models of the investigated discontinuities. To
validatethetheory, the conver gence of the method isdiscussed and
comparisons between our simulations and theoretical and exper-
imental data are presented. The excellent behavior of our results,
together with thecomputational efficiency of the proposed method,
proves that the developed computer-aided-design tool can be suc-
cessfully used in the design of complex microwave subsystemsin-
volving curved waveguides.

I ndex Terms—Gener alized-admittance-matrix (GAM)
representation, method of moments, rectangular waveguides,
uniform bends.

I. INTRODUCTION

HE modal analysis of uniform bends in rectangular

waveguide has been subject to investigation from many
researchers since these components are essential and very
frequently used in sophisticated microwave devices for both
space and ground applications (e.g., diplexers, multiplexers,
radar seekers, beam-forming networks, satellite communication
systems, etc.). In order to overcome the mechanical constraints
of such systems demanded by the industry requirements, it
is often necessary to resort to compact bends. A full-wave
characterization of these structures is therefore crucia to
develop efficient computer-aided design (CAD) tools for the
analysis and design of arbitrary microwave devices involving
circular bends.
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In this way, the development of accurate and efficient
methods for the analysis of the above-mentioned uniform bends
has received considerable attention in the technical literature.
In 1948, Rice [1] employed matrix theoretical techniques to
obtain approximate formulas for the reflection coefficient of
E- and H-plane circular bends and, in 1966, Cochran and
Pecina [2] expanded the radial component of the electric and
magnetic fields in terms of Bessel functions in order to obtain
the angular propagation constants of curved regions. By means
of a method based on an integral-eguation formulation, Bates
[3] and Mittra [4] analyzed the junction between straight and
curved waveguides, and Lewin et al. [5] investigated - and
H-plane bends with a method based on a perturbational anal-
ysis. More recently, a mode-matching technique for modeling
discontinuities involving uniform bends was proposed by Ac-
catino and Bertin [6] and Weisshaar et al. [7], and amultimodal
method for analyzing full-band matched waveguide bends was
outlined by Mongiardo et al. [8]. Other different techniques
have been aso investigated: equivalent circuits based on
lumped elements were proposed by Carle [9] and Marcuvitz
[10], Gimeno and Guglielmi [11] have efficiently used a
multimode equivalent-circuit representation for the analysis of
bends, Pregla [12] has presented a procedure for the analysis
of concatenations of straight and curved waveguides based
on the method of lines, and Cornet et al. [13] have obtained
the scattering matrix of uniform bends with a technique based
on differential geometry. However, the aforementioned works
only consider the excitation due to the fundamental mode of
the rectangular input port, thus dividing the analysis into H-
and E-plane bends, both represented in Fig. 1, where ¢ and b
are the dimensions of the rectangular guide (a > b). Therefore,
if the full-wave spectrum was excited into the rectangular input
port, al these previous analysis techniques could not be used
in order to analyze the considered device.

Thus, the main objective of this paper is to introduce a
full-wave analysis procedure based on the generalized admit-
tance matrix (GAM) representation [14] of H- and E-plane
bends, which allows to consider the possible incidence of
any arbitrary mode of the rectangular input port. The GAM
formulation alows to model the junction between straight and
curved waveguides leading to simple analytical expressions.
The proposed method, combined with an efficient inversion
technique for solving banded linear egquation systems [15],
achieves convergent and accurate results and shows excellent
agreement with experimental data. Moreover, we have also
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E-plane bend

b)

Fig. 1. (a) H-planeuniform bend. (b) E-plane uniform bend.

investigated the case of a direct connection between an H- and
an E-plane bend. Although this example is not very complex,
we can consider it as representative of a great number of
practical applications, whose accurate analysis is not possible
considering only the excitation of the fundamental mode.
Therefore, the main contributions of this paper are the calcu-
lation in a very efficient way of the full modal spectrum of
curved regions, as well as the analysis of connections of bends
taking under consideration any arbitrary incidence due to the
excitation of the fundamental and higher order modes.

This paper is organized in two main sections. Section Il
is dedicated to describe the theoretical base of the problem
under consideration. Thus, in Section I1-A, a full-wave char-
acterization of uniform circular bends is performed and the
whole set of modes of the curved region is finally derived.
Next, a rigorous analysis of junctions between straight and
curved waveguides is presented in Section [1-B. All mathemat-
ical details required to fully characterize the discontinuities
considered can be found in Appendixes A and B. Finaly,
in Section Il1, the convergence of the proposed method is
first discussed, and comparisons between our simulations and
theoretical and experimental data are presented in order to
fully validate the new analysis method proposed.

Cut Plane A-A’ (H-plane case)

Cut Plane A-A’ (E-plane case)

Mean radius o]

Fig. 2. Reference system used in the description of the curved waveguides.

II. THEORY

Thefirst objectivehereisto obtain afull-wave modal solution
of circular uniform bends. Next, making use of this multimodal
characterization, junctions between straight and curved wave-
guide regions will be investigated in order to obtain the scat-
tering parameters of the proposed structures.

A. Full-Wave Characterization of Uniform Bends in
Rectangular Waveguide

Here, we will construct the whole set of modes of a continu-
ously curved waveguide. Therefore, we must previously define
the reference coordinate system that we are going to employ in
order to describe the structures under investigation. After that,
the Helmholtz equation for curved waveguides will be derived,
and the TEY =~ and TMY . modes for the curved region will
be constructed. The orthonormality condition that must satisfy
these modes will then be analytically proven and, finaly, the
Helmholtz equation will be solved by means of the well-known
method of moments.

1) Reference System Employed in the Description of Curved
Waveguides: The reference system shown in Fig. 2 and de-
fined by the set of coordinates (v, v, s), which was proposed by
Lewin et al. [5], has been chosen to analyze the uniform curved
waveguides. In this figure, ¢ and d are the transversal dimen-
sions of the curved waveguide, R denotes the mean radius of
curvature of the bend, and O represents the center of curvature
of the waveguide. It is important to point up that s = R - ¢
definesthe direction of propagation, and the v coordinate estab-
lishes the displacement with regard to the mean radius R. With
reference to Fig. 2, it must be emphasized that the ¢ dimension
determines the curvature plane of the bend and it must be suit-
ably chosen when analyzing H - and E-plane bends. Concretely,
for a given rectangular cross section of the bend of dimensions
a and b (a > b), wemust choose ¢ = @ and d = b for the anal-
ysis of H-plane bends, and for the analysis of E-plane bends,
we must choose ¢ = b and d = a. Mathematical details of this
new reference system can be found in Appendix A.

2) Helmholtz Equation for Uniform Bends in Rectan-
gular Waveguide: Construction of the Modes in the Curved
Region: We start with the following equations relating the
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electromagnetic fields E and H with the electric and magnetic
vector potentials £' and A, respectively [16]:

" S 1 o

EF=-VxF+4+—VxVxA 1)
Jwe

- -~ 1 -

H=VXxA4+ —VXxVxF (2
Jwp

where a time-harmonic dependence (’**) has been assumed,
and £ and A satisfy the well-known Helmholtz eguation

(V2 4 w?pe) - { ;} =0. 3

Following [2], we are going to construct the TEY and TMY
modes in the curved region. Equation (3) can be rewritten as
follows:

(V? +w?pe) - (v, y, s) =0 4

where (v, y, s) denotes the component along the y-axis of
the A or I’ potentia functions. Now, by using (34) collected
in Appendix A, we can rewrite (4) as

2 2 2 82 2 82 2 2
<£ 727 3 +£ — gz TEw u6> P(v, y, s) =0
(5

where £(v) = R + v. Applying separation of variables on
(v, y, s), and assuming a propagation type ¢~/ for the
modes advancing in the s > 0 direction, we can express the
scalar potential as follows:

P(v, y, 5) = f() - gly) - e (6)

where f(v) isan unknown function and g(y) can be written as

Sin<7177r <y—|—g>>, n=1,23,...

a(y) = (7)

cos nr —i—d =0,1,2
d y 2 ? n_ ? ? Tt

due to the uniformity of the bend along the y-axis direction.
Finally, after using the two previous equations, (5) becomes the
following linear eingenval ue problem:

[52 +£—+£2<w pe (%)QH-f(v)
= (R*3%) - f(v) (8)

which isthe Helmholtz equation particularized to uniform rect-
angular waveguide bends. It should be noted that this equation
appliesto both TEY and TM¥ modes. Details of the solution of
this equation, which is easily solved by means of Galerkin pro-
cedure, can be found in [11].

For the TM¥ modes, the vector potential functions F and A
must be chosen as indicated in [16]

F=0 A=y™(v,y, s)i,. ©)

Sincey ™ (v, 7, s) must satisfy the Dirichlet boundary condi-
tions on the cross section of the curved waveguide, we get from
(6) and (7)

B 0 9) = 1) cos (0 (w4 5) ) e
n=0,1,2,... (10)

where fT™ () isan unknown function determined through the
method of moments. By substituting (9) into (1) and (2), it is
possible to obtain the expression of the transverse electric and
magnetic fields related to the TMY modesin terms of the scalar
modal function 1™ (v, ¥, s). Once the transverse-field com-
ponents have been derived, we can obtain the following expres-
sions for the normalized TMY vector-mode functions:

nw
y i y d
é’pTM - d 5 ./\/TM - sin <n;r <y + 5))
wie— [ 22
a d
d g]‘/]\qy = MY niw d
Ju Uy —/\/1;T - cos <7 <y+ 5))
()i (11)
I ¥ 1 Y ¥ nmw d
T™ ™™ TM -
h STy M e (WCOS(F <y+§>>u
(12)

where p is an arbitrary TMY mode, whose modal indexes are
(m, n), and N;'™° represents the normalization constant of
each vector-mode function in the rectangular cross section of
dimensions ¢ and d, whose expression can be easily deduced
from Appendix B as follows:

d c/2 2 —1/2
™Y _ | @ TMY
NP - [ / o2 1+ L (frn (U)) di;| . (13)

n

In order to construct the TEY modesin the curved region, the
same procedure employed before with the TMY modes can be
followed, thus finally leading to the following expressions for
the normalized TEY vector-mode functions:

~TEY 1

G = — N Sln<nd <u+ )) FE (v,
1+E

(14)
nw
(%)
P 2 Vp
we— [ 25
= ()
dTEy v ] d
~#JU+NPTE ~Sln<%<y+ ))

oY —
: r};F (v)iiy

where fT* (v) is a new unknown function and where A/’
denotes the normalization constant of TEY modes in the rect-

(15



400 |IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 2, FEBRUARY 2003

angular cross section of the curved waveguide, which can be
expressed as shown in Appendix B as follows:

—1/2

g./c/Q L@ . (fr?lEy(v))Q dv

TEY _
NP B —c/2 14+ —
) R

(16)

being p an arbitrary TEY mode of modal indexes (m, n).
Next, following [10], we make use of the just deduced

complete set of vector-mode functions in order to expand any

arbitrary transverse electromagnetic field in the curved region

Ey=> Vi-& H=> ILh

where &; and ; are the normalized vector-mode functions re-
lated to the ith mode in the curved region, and where V; and Z;
arethe modal voltages and currents representing the amplitudes
of the corresponding vector-mode functions. Moreover, this ex-
pansion allows usto define amodal admittancerelated to theith
TEY or TMY mode as

) <nﬂ>2
wope — | —
YTEy — d YT]\'Ty o

wef3
wBp ‘ 9 nr\%
- (5)
(18)
Once all the expressions for the normalized vector-mode
functions have been calculated, the orthogonality relationship
satisfied by the TEY and TMY modes in the curved region is
verified in Appendix B, where the following genera orthonor-
malization condition for such modesis also imposed:

/ /S (& x Biy) - @ S, = by

In this expression, p and ¢ represent both TEY and TMY modes
of the curved region.

(17)

(19)

B. Analysis of Discontinuities Between Sraight and Curved
Waveguides of Rectangular Cross Section

Thekey point in the analysis of uniform bendsin rectangular
waveguide lies in the transition from the straight waveguide
to the curved waveguide region. Therefore, here, a rigorous
analysis of junctions between straight and curved waveguides
of rectangular cross section including the full set of modes
previously derived is presented. The analysis procedure, based
on the genera network theory proposed in [14], evaluates a
GAM representation of each planar junction under considera
tion. The method efficiently describes the interactions between
al the excited modes in both sides of the analyzed junction
by means of simple expressions that facilitate the software
implementation. The GAM formulation for junctions between
straight and curved waveguides can be readily obtained by
correctly adapting the method described in [14] to this par-
ticular case.

1) Analysisof Bendsin Rectangular Waveguide: In this sec-
tion, afull-wave characterization of singleand cascaded uniform
bends in rectangular waveguide is presented. The key feature

of this procedure is that it starts from the GAM representation
of each element of the structure once they have been previously
computed. Therefore, an arbitrary device involving bends can
be analyzed by cascading the corresponding coupling matrices,
thus giving place to a global multimode representation.

a) H-and E-planebends: Inagenera representation of
an H- or an E-plane bend, we can observe three waveguides
(the curved waveguide and the input and output straight wave-
guides) and two discontinuities between the curved segment and
the input and output straight ports. Both curved and straight
uniform waveguides al so have their corresponding GAM repre-
sentation. Consequently, by correctly cascading all theinvolved
coupling matrices, we can get the global multimode represen-
tation of an H- or an E-plane bend, which can be efficiently
solved as indicated in [15] to obtain the scattering parameters
of the considered bend.

b) Connection of bends. Other structures involving sev-
eral bends can be readily analyzed following the same proce-
dure described above. The first structures considered are the
so-called U and S configurations (see Fig. 3), both consisting
essentially in connecting two E- or H-plane bends through a
length [ of straight waveguide. It is interesting to note that, in
the S configuration, the involved bends have opposite curvature
centers [see Fig. 3(b)]; therefore, each bend is described in a
different reference system. Since the relationship between both
reference systemscanbeeasily setupasv = —v',y = —3/, and
s = &, itispossibleto obtain, after imposing the corresponding
boundary conditions in the junction plane, the following rela
tionship between the modal voltages and currents associated
with the modes in both reference systems:

v, = V]j <sin2 <g) — cos? <

3
SE
N———

where (m, n) are the modal indexes related to the pth mode
of the straight waveguide between the two bends. Due to this
analysis, wefinaly concludethat the classical GAM representa-
tion of the straight waveguide of length I between the two bends
should be modified in order to account for the cited change of
the reference systems. Thus, if Y& (6, v = 1, 2) represents
the well-known multimode admittance matrix representation of
alength [ of uniform waveguide [17], it must be rewritten now
as follows:

PO b -l N I S iy )
" B YAVU(V% 1) YAVU(V% 2) B Yu(v% 1) N F Yu(v% 2)
(22)
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Input straight
waveguide

Output straight
waveguide

a)

Input straight
waveguide

Output straight
waveguide

Fig. 3. Connection of bends. (a) U configuration. (b) .S configuration (O, and
O- arethe centers of curvature of the involved bends).

where F' isadiagonal matrix that relates both reference systems
defined by the elements

-<81112 <n?7r> — cos? <n?7r>> bi (23

where ¢ and 5 point to the several modes considered inthe GAM
representation of the straight waveguide.

Thelast structure to be studied is a connection of an H-plane
and an E-plane bend through alength [ of astraight waveguide,
as shown in Fig. 4. Following classical techniques [2]{7], the
analysisof thisstructure could be performed taking into account
only the set of modes excited by each bend. For the H-plane
bend case, and considering thereference system showninFig. 2,
only the TM?¥ , modes should be considered at the reference
planes, while the E-plane case should include the set of TEY |
modes. If the length [ between the bends is large enough, the
two bends can be connected, considering only the fundamental
mode as an accessible mode, since higher order modes can be
seen as localized modes (they attenuate very rapidly with the
distance). On the contrary, if [ isvery small (or even zero), al
the previous set of modes should be considered as excitation of
both bends and, therefore, a complete family of modes must be
taken into account in the solution of each bend. Following [2],
we will consider in thiscasethe TEY, . and TMY, . modes.

mn mn

E - plane
bend

Fig. 4. Connection of an H - and E-plane bend.

As in the S configuration, a change of the reference sys
tems that describe the two bends connected is also present in
this case. As we can check from Fig. 4, the relationship be-
tween both reference systemsisnow v = ¢/, y = —+/, and
s = s'. Following the same steps carried out in the discussion
of the S configuration, it is then possible to conclude that this
change of the reference system will modify the classicall GAM
Y& (8, v = 1, 2) of the straight waveguide placed between
the bends so that its GAM will be now expressed as

lffu%’” Yo 2>] _l vt vi?.e

v —
vt e viel.a ve?

uw

(24)

with GG again being a diagonal matrix defined by the following
elements:

Giy =T - <c052 <g) — sin? <g>> - 64 (25)

where i and j denote the modes considered in the GAM for-
mulation of the straight waveguide, m is the modal subindex
related to the v’ coordinate of the ith or jth mode, and whereI';
is defined as follows:

1, if < isaTE® mode of the rectangular
r waveguide
") -1, ifiisaTM* mode of the rectangular
waveguide.

(26)

[11. NUMERICAL AND EXPERIMENTAL RESULTS

Firstly, wefocus our attention on the convergence of the prop-
agation constants of the modes in the curved region to study
the efficiency of the Galerkin procedure used in order to solve
the Helmholtz equation obtained for curved waveguides [11].
In Fig. 5, we have represented the magnitude of the propaga-
tion constantsrelated to the TE; |, modes of acircular H-plane
bend (R = 15.24 mm, ¢ = 22.90 mm, d = 10.20 mm,
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Fig. 5. Convergence of the propagation constant of the TEZ ,, modesin the
curved waveguideregion (n = 1, 2, 5, 10, 20) asafunction of the number of
expansion functions used to describe each mode in the curved region (H -plane
bend in WR-90 waveguide, @ = 22.90 mm, b = 10.20 mm, R = 15.24 mm,
frequency = 10 GHz).

T T T T T T T T

U-configuration

oy Ref[7] &
S-configuration
Ref[7] -
220 + ]
R N
- e e

g e
- -+ - B

s, @)
2

8 8.5 9 95 10 105 11 I1L5 12
Frequency (GHz)

12.5

Fig. 6. Comparison between our results and numerical data from [7]. Both
U and S configurations are analyzed. Cascaded 30° H-plane bends (R =
15.24 mm) through a straight transmission line of length { = 5 mm (WR-90
waveguide, ¢ = 22.90 mm, b = 10.20 mm).

frequency= 10 GHz) withn = 1, 2, 5, 10, 20 as a function
of the number of expansion functions used in the description of
™ (y) and fTF(v) [see (11) and (14)]. By analyzing this
figure, one observes that higher order modes need more expan-
sion functions than lower ones in order to reach convergent re-
sults. However, a high order mode like the TEY ,,, only needs
50 terms to achieve convergence. Consequently’, we conclude
that the new method we have proposed to evaluate the full spec-
trum of the modes in curved regions is very efficient from the
computationa point-of-view.

Next, in Fig. 6 our resultsfor the U and .S configurations are
compared with the ones obtained in [7]. Once again, our sSimu-
lated results are in excellent agreement with the numerical data
availablein the literature, thus validating our analysis method.

Junctions between H- and E-plane bends are then inves-
tigated with regard to authors measurements. In Fig. 7, the
magnitude of the reflection coefficient and the phase of the

0 T T T T T T T
Simulated data (1=0mm)
10+ Simulated data (I=4mm) ------ 1
Measured data (1=0mm) -
20| Measured data 1=4mm) +
- =30 b
S
= i
™~ .
< 1
_80 , . : . . . . : .
10 105 11 115 12 125 13 135 14 145 IS5
Frequency (GHz)
a)
Simulated data (1=0mm) ——
300 Simulated data (I=4mm) - ]
Measured data (1=0mm) <
200 | Measured data (I=4dmm) +
2 h s
s 100
5o
3
= 0
g -0 -
200 | ) |
-300 1

10 105 11 115 12 125 13 135 14 M5 IS
Frequency (GHz)

b)

Fig. 7. Comparison between simulated and measured data. Connection of a
90° H-planebend (R = 31.25 mm) anda90° E-planebend (R = 31.25 mm)
in WR-75 waveguide. A straight transmission line of length ! is included
between the bends. (a) Magnitude of the reflection coefficient. (b) Phase of the
transmission coefficient.

transmission coefficient for a junction between a 90° H-plane
bend and a 90° E-plane bend in WR-75 waveguide are pre-
sented. It isimportant to point out again that this new structure
could not be analyzed by means of classical methods [2]-{7]
since it excites the complete set of TMY, and TEY, modes.
In Fig. 7, two cases are anayzed: in the first one, we do
not include a straight transmission line between both bends
(I =0 mm) and, in the second case, I =4 mm. Our results
are successfully validated by comparisons with the measured
data. It should be emphasized that the computation time for a
typical analysis (with 30 modes in the network and 20 basis
functions in order to describe each mode in the curved region)
is 0.228 g/frequency point on a Pentium 111 (933 MHZz) per-
sona computer. Therefore, the developed software becomes
ideal to be employed into CAD software packages of complex
waveguide systems involving uniform bends.

IV. CONCLUSION

A rigorous and computationally efficient method for ana-
lyzing uniform curved bendsin rectangular waveguide has been
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proposed, considering the possible incidence of any arbitrary
mode of the rectangular input port. The discontinuities between
straight and curved waveguide regions have been analyzed by
means of the GAM representation, thus providing a full-wave
characterization of theinvestigated structures. The convergence
of the presented method has been discussed and comparisons
of our simulated results with numerical and experimental data
have fully validated the new proposed theory. In conclusion,
the analysis method described can be easily inserted into CAD
tools of complex passive microwave devices for space and
ground applications.

APPENDIX A
REFERENCE SYSTEM FOR DESCRIBING CURVED WAVEGUIDES

The relation between the coordinate system (v, ¥, s) and the
associated Cartesian coordinate system (z, y, z) can be easily
derived from Fig. 2 as follows:

z=R. {—1+<1+%) . cos <%)} @7
y=y (28)
2=R- <1+ R) sin <%) (29)

On the other hand, the unit vectors can be also easily obtained
as follows:

N
Uy S <puT + sin <pu4

=1

co
Uy

Y

iy = — sin @i, + cos Yil . (30)
The unit vectors of the coordinate system have been also repre-
sented in Fig. 2. Aswe can verify fromthisfigure, i, definesthe
direction of propagation in the curved waveguide region and i,
moves away from the center of curvature. Finaly, if f denotes
an arbitrary scalar function and A denotes a vectorial function,
the differential operators related to the reference system chosen
can be easily calculated in the following way:

af . af 1 of .
N I S S | 31
Vi y, s) =5 1 +ayuy+1+zasu (31)
R
- 1 a v
A - A=(A,-(14=
vt =t (e (7))
R
v 0A,
+ P <Ay'<1+ﬁ>>+ 83:|
(32
@, i, <1+%)as
- 1 g 4 a
V x (v,y,s)_1+2. % o 5
R
A, A, <1+E A,

(33)

T i S N

2 e
V= R+wv 8v+8112 oy pw\2 0s2
<1+§>

(34)

APPENDIX B
ORTHONORMALITY RELATIONSHIP BETWEEN THE MODES IN
THE CURVED REGION

We begin defining an orthogonality condition between two
arbitrary TM¥ modes: the pth of subindexes (11, ny) and the
gth of subindexes (mas, ns) [the superscript TMY is omitted in
the functions f(v) and (v, y)] asfollows:

1/)1)(117 Y, 8) = fm, (V) - cos <% <y + g)) . eI
(35)

Yq(v, Y, 8) = fm, (V) - cos <n7 <y+ g)) . o985
(36)

Equation (8) yields for each of the above modes

U L m\?

¢y oo (e (M) )t
- RQ@,% “fma(v) =0 (37)
d rnz drng ™ 2

52 f 5 LZU +£2 <w2ﬂe_ <%) ) : fmz(v)

— R} - frn, (v) = 0. (39)

If wemultiply (37) by (fm, (v)/¢) and (38) by (fm, (v)/¢), and
then subtract the two resulting equations, we get the following
expression:

dfml dfmz Nom 2 nymw 2
(Bt - fml)}s(( )—(7)>

o = (B2 = B2) &+ s Fnse (39)

3
The discussion requires to distinguish between two cases. Inthe
first one, we will assumethat n; = no andmy # mo. Thus, if
p and ¢ represent two nondegenerate modes, and taking into ac-

count Dirichlet boundary conditions, one easily concludes from
(39) that

dv =0.

c/2 1
/ @) @)
—c/ +E

(40)

When n; # na (independently of m; and m.), we find that
the cosine functions related to the scalar functions <, and <,
are mutually orthogonal. Consequently, we finally deduce that
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the desired orthogonality condition between two arbitrary non-
degenerate TMY modes p and ¢ should be mathematically ex-
pressed by means of the following integral in terms of the modal
scalar function (v, y):

1
[ [ ontow) duto. ) — as,
s 1+ —
R
d o/ 1
:6—'67117”2'/ fnh(v)'fnlz(v)'l—vdv
n1 —c/2 —
/ + &
0, if ni 75712
= 0, if ny = n9 andmy 75 mo (41)
750, ifnlzngandmlzmg

where 6, ., represents the Kronecker delta and ¢,,, denotes
the well-known Neumann function [10]. With reference to
condition (41), it should be noted that our interest, however,
is to obtain an orthonormalization condition in terms of the
vector-mode functions used in the expansion of an arbitrary
TMY electromagnetic field. Thus, a new orthonormalization
condition can be readily obtained in terms of the normalized
vector-mode functions calculated in Section 11-A.2 asfollows:

/ /S (B X BN -, dS, = by

which allows to determine (13) for the normalization constant
NM” of these modes. For the TEY modes, the same results
obtained before can be easily derived following the same proce-
dure. Therefore, we conclude that TEY modes satisfy the same
orthonormalization condition stated in (42) for TMY modes.

Finally, the case in which p isa TEY mode and ¢ isa TMY
mode must be studied. Firstly, let p(mq, ny) be an arbitrary
TMY mode and ¢(m2, n2) beaTEY one. Using (11) and (15),
we can obtain

/ /S (G x REe )ity ds, = AN A
mam nam
d d

e () ()

where theintegrals 11, I», I3, and 1, are defined as follows:

/2 Ny d
I E/ sin<L <y+—>>
. —d/2 d 2

(42)

5 I3ls|  (43)

. nam d
+ S1n <7 <y + 5)) dy (44)
c/2 B d TMY
I E/ B (v) - T gy (45)
? —c/2 ( ) dv
4/2 nim d
I E/ Cos<; <y+—)>
° —d/2 d 2
ccos [ 25 [y + d dy (46)
d 2

c/2 ’ dfTEy
I, = / M () - —;;2 dv. (47)

—c/2

The discussion of the above integrals requires to consider two
cases. In the first one, we will consider that n; # ns. This
assumption leads to /; = I3 = 0 and, consequently, integral
(43) would be equal to zero. The next caseisto assumen; = no.
Integral (43) now yields

/ /S (5}“’“><E§Ey*).asdss
mir
d
nymw 2
2 ==
()

-c/2 d( T™M? TE”)
'/ ma mo dUIO
—c/2 dv

_ TMY ArTEY
_NP er

(48)

where we have taken into account the Dirichlet boundary con-
dition.

On the other hand, let p(mm4, n1) be an arbitrary TEY mode
and g(mg, ny) be an arbitrary TMY mode. Considering now
(12) and (14), we easily find that the two modes are mutually
orthogonal for this trivial case.
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